Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Host Microbe ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2240051

ABSTRACT

Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing. However, 11 antibodies targeting the stem helix neutralized betacoronaviruses from different lineages. Eight antibodies in this group, including the six broadest and most potent neutralizers, were encoded by IGHV1-46 and IGKV3-20. Crystal structures of three antibodies of this class at 1.5-1.75-Å resolution revealed a conserved mode of binding. COV89-22 neutralized SARS-CoV-2 variants of concern including Omicron BA.4/5 and limited disease in Syrian hamsters. Collectively, these findings identify a class of IGHV1-46/IGKV3-20 antibodies that broadly neutralize betacoronaviruses by targeting the stem helix but indicate these antibodies constitute a small fraction of the broadly reactive antibody response to betacoronaviruses after SARS-CoV-2 infection.

2.
Nat Commun ; 13(1): 7733, 2022 12 14.
Article in English | MEDLINE | ID: covidwho-2160214

ABSTRACT

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. However, the basis for such cross-protection at the molecular level is incompletely understood. Here, we characterized the repertoire and epitope specificity of antibodies elicited by infection with the Beta, Gamma and WA1 ancestral variants and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a method to obtain immunoglobulin sequences with concurrent rapid production and functional assessment of monoclonal antibodies from hundreds of single B cells sorted by flow cytometry. Infection with any variant elicited similar cross-binding antibody responses exhibiting a conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may account for the continued efficacy of vaccines based on a single ancestral variant.


Subject(s)
COVID-19 , Immunoglobulin Variable Region , Humans , Epitopes/genetics , SARS-CoV-2/genetics , Clone Cells , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
3.
Asia Pac J Ophthalmol (Phila) ; 11(5): 481-487, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2018213

ABSTRACT

PURPOSE: This study aimed to summarize the latest literature on the trends and incidence of ocular trauma during the COVID-19 pandemic. DESIGN: Systematic review and meta-analysis. METHODS: A systematic literature search was conducted to identify the relevant literature. The search period was between January 1, 2020, and September 20, 2021. The incidence of overall and various types of ocular trauma during the COVID-19 pandemic and the control period was analyzed. The data from different studies were pooled. The odds ratio (OR) and 95% confidence interval (CI) were calculated. RESULTS: A total of 32 articles were included. After pooling the data from all included studies, the incidence of total and pediatric ocular trauma during the COVID-19 pandemic was 67.7% and 54.3% of those in the control period, respectively. However, the proportion of ocular trauma in eye emergency visits increased during the pandemic (OR, 95% CI: 1.46, 1.04-2.06). The proportion of domestic ocular trauma increased (OR, 95% CI: 3.42, 1.01-11.62), while ocular trauma related to sports and outdoor activities and occupational ocular trauma decreased (OR, 95% CI: 0.64, 0.09-4.29 and 0.18, 0.10-0.33, respectively). It was also reported that chemical injury caused by alcohol-based sanitizers, photokeratitis caused by ultraviolet lamps, and mechanical eye injury caused by masks increased during the COVID-19 pandemic. CONCLUSIONS: There was a reduction in overall eye injuries and substantial differences in the spectrum of ocular trauma during the COVID-19 pandemic. Proper health education and supervision should be strengthened to prevent ocular injuries related to COVID-19 preventive interventions.


Subject(s)
COVID-19 , Eye Injuries , COVID-19/epidemiology , Child , Eye Injuries/epidemiology , Eye Injuries/etiology , Eye Injuries/prevention & control , Humans , Incidence , Masks/adverse effects , Pandemics
4.
Science ; 377(6607): 728-735, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1968212

ABSTRACT

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19 , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Peptides/immunology , Protein Conformation, alpha-Helical , Protein Domains , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
5.
Structure ; 30(9): 1233-1244.e7, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1937225

ABSTRACT

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike elicits diverse antibodies, but it is unclear if any of the antibodies can neutralize broadly against other beta-coronaviruses. Here, we report antibody WS6 from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, Middle East respiratory syndrome (MERS)-CoV, and hCoV-OC43. The crystal structure at 2 Å resolution of WS6 revealed recognition to center on a conserved S2 helix, which was occluded in both pre- and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion and post-viral attachment. Comparison of WS6 with other recently identified antibodies that broadly neutralize beta-coronaviruses indicated a stem-helical supersite-centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156-to be a promising target for vaccine design.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
6.
Science ; 376(6591): eabn8897, 2022 04 22.
Article in English | MEDLINE | ID: covidwho-1759268

ABSTRACT

The rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant and its resistance to neutralization by vaccinee and convalescent sera are driving a search for monoclonal antibodies with potent neutralization. To provide insight into effective neutralization, we determined cryo-electron microscopy structures and evaluated receptor binding domain (RBD) antibodies for their ability to bind and neutralize B.1.1.529. Mutations altered 16% of the B.1.1.529 RBD surface, clustered on an RBD ridge overlapping the angiotensin-converting enzyme 2 (ACE2)-binding surface and reduced binding of most antibodies. Substantial inhibitory activity was retained by select monoclonal antibodies-including A23-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309, and LY-CoV1404-that accommodated these changes and neutralized B.1.1.529. We identified combinations of antibodies with synergistic neutralization. The analysis revealed structural mechanisms for maintenance of potent neutralization against emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Cryoelectron Microscopy , Humans , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
7.
Thromb Res ; 195: 219-225, 2020 11.
Article in English | MEDLINE | ID: covidwho-680809

ABSTRACT

INTRODUCTION: Abnormal coagulation function has been demonstrated to be involved in the disease progression of COVID-19. However, the association between D-dimer levels and the severity of COVID-19 is not clear. The study was aimed to investigate the association between D-dimer levels and the severity of COVID-19 based on a cohort study and meta-analysis. MATERIALS AND METHODS: Demographic and clinical data of all confirmed cases with COVID-19 on admission to Tongji Hospital from January 27 to March 5, 2020, were collected and analyzed, and coagulation function parameters were described and compared between patients with severe infection and those with non-severe infection. Cohort studies reporting risk estimates for the D-dimer and severity of COVID-19 association were searched and included to perform a meta-analysis. RESULTS: In our cohort study, patients with severe disease were more likely to exhibit dysregulated coagulation function, and a significantly higher D-dimer level (median 1.8 µg/ml [interquartile range 0.9-4.6] vs 0.5 [0.3-1.1], p < 0.001) was found in severe cases than the mild ones, on admission. In the meta-analysis of 13 cohort studies (including the current study), patients with severe disease had an increase in mean D-dimer value by 0.91 (95% confidence interval, 0.51-1.31, p < 0.001) µg/ml compared to those with non-severe disease, and odds of severe infection was associated with D-dimer greater than 0.5 µg/ml (odds ratio = 5.78, 95% confidence interval, 2.16-15.44, p < 0.001) on admission. CONCLUSIONS: Patients with severe COVID-19 have a higher level of D-dimer than those with non-severe disease, and D-dimer greater than 0.5 µg/ml is associated with severe infection in patients with COVID-19.


Subject(s)
Coronavirus Infections/blood , Fibrin Fibrinogen Degradation Products/analysis , Pneumonia, Viral/blood , Aged , Betacoronavirus/isolation & purification , Blood Coagulation , COVID-19 , Cohort Studies , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Severity of Illness Index
8.
Stroke ; 51(7): 2219-2223, 2020 07.
Article in English | MEDLINE | ID: covidwho-428108

ABSTRACT

BACKGROUND AND PURPOSE: Information on stroke survivors infected with coronavirus disease 2019 (COVID-19) is limited. The aim of this study was to describe specific clinical characteristics and outcomes of patients with COVID-19 with a history of stroke. METHODS: All the confirmed cases of COVID-19 at Tongji Hospital from January 27 to March 5, 2020, were included in our cohort study. Clinical data were analyzed and compared between patients with and without a history of stroke. RESULTS: Of the included 1875 patients with COVID-19, 50 patients had a history of stroke. The COVID-19 patients with medical history of stroke were older with more comorbidities, had higher neutrophil count, and lower lymphocyte and platelet counts than those without history of stroke. The levels of D-dimers, cardiac troponin I, NT pro-brain natriuretic peptide, and interleukin-6 were also markedly higher in patients with history of stroke. Stroke survivors who underwent COVID-19 developed more acute respiratory distress syndrome and received more noninvasive mechanical ventilation. Data from propensity-matched analysis indicated a higher proportion of patients with COVD-19 with a history of stroke were admitted to the intensive care unit requiring mechanical ventilation and were more likely to be held in the unit or die, compared with non-stroke history COVID-19 patients. CONCLUSIONS: Patients with COVID-19 with a history of stroke had more severe clinical symptoms and poorer outcomes compared with those without a history of stroke.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Stroke/epidemiology , Aged , Blood Cell Count , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/epidemiology , Female , Hospital Mortality , Hospitals, University/statistics & numerical data , Humans , Male , Middle Aged , Pneumonia, Viral/epidemiology , Procedures and Techniques Utilization , Propensity Score , Recurrence , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Stroke/blood , Stroke/therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL